

Large-Scale Data Engineering

SQL on Big Data

event.cwi.nl/lsde

THE DEBATE: DATABASE SYSTEMS VS MAPREDUCE

CWI Centrum Wiskunde & Informatica

A major step backwards?

- MapReduce is a step backward in database access
 - Schemas are good

Centrum Wiskunde & Informatica

- Separation of the schema from the application is good
- High-level access languages are good
- MapReduce is poor implementation
 - Brute force and only brute force (no indexes, for example)
- MapReduce is not novel
- MapReduce is missing features
 - Bulk loader, indexing, updates, transactions...
- MapReduce is incompatible with DMBS tools

Michael Stonebraker Turing Award 2015

- Databases only help if you know what questions to ask
 - "Known unknowns"

GWI

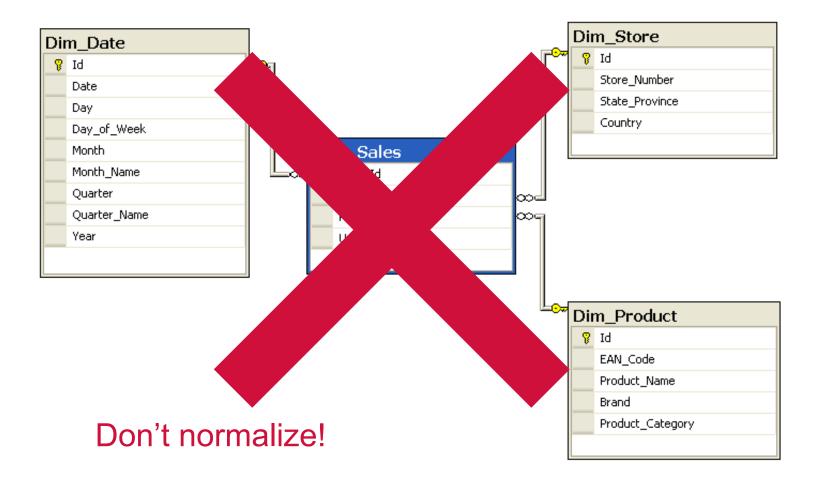
Centrum Wiskunde & Informatica

- What's if you don't know what you're looking for?
 - "Unknown unknowns"

ETL: redux

- Often, with noisy datasets, ETL is the analysis!
- Note that ETL necessarily involves brute force data scans
- L, then E and T?

Structure of Hadoop warehouses



event.cwi.nl/lsde

CWI

Centrum Wiskunde & Informatica

Relational databases vs. MapReduce

Relational databases:

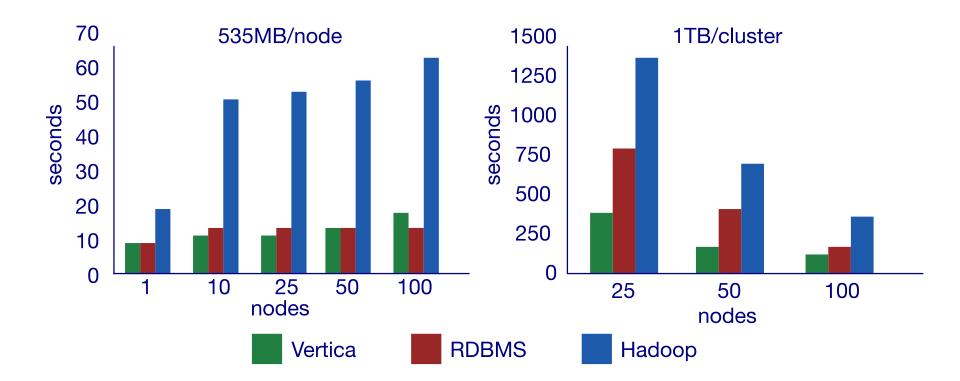
Centrum Wiskunde & Informatica

- Multipurpose: analysis and transactions; batch and interactive
- Data integrity via ACID transactions
- Lots of tools in software ecosystem (for ingesting, reporting, etc.)
- Supports SQL (and SQL integration, e.g., JDBC)
- Automatic SQL query optimization
- MapReduce (Hadoop):
 - Designed for large clusters, fault tolerant
 - Data is accessed in "native format"
 - Supports many query languages
 - Programmers retain control over performance
 - Open source

Philosophical differences

- Parallel relational databases
 - Schema on write
 - Failures are relatively infrequent
 - "Possessive" of data
 - Mostly proprietary
- MapReduce
 - Schema on read
 - Failures are relatively common
 - In situ data processing
 - Open source

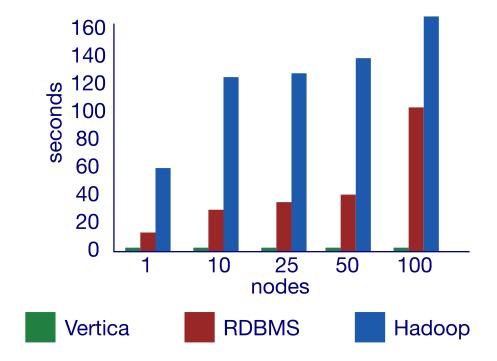
MapReduce vs. RDBMS: grep



SELECT * FROM Data WHERE field LIKE '%XYZ%';

event.cwi.nl/lsde

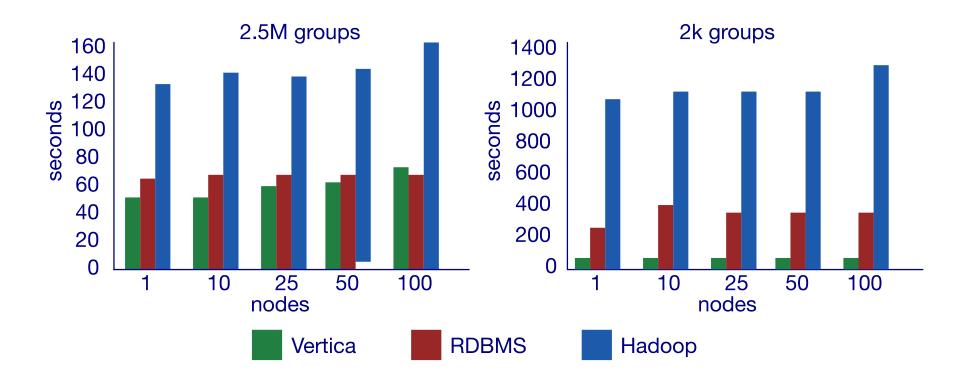
MapReduce vs. RDBMS: select



SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

event.cwi.nl/lsde

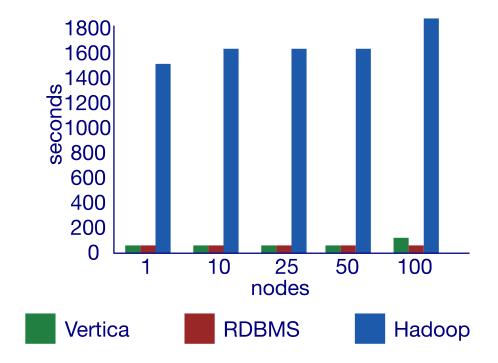
MapReduce vs. RDBMS: aggregation



SELECT sourceIP, SUM(adRevenue) FROM UserVisits GROUP BY sourceIP;

event.cwi.nl/lsde

MapReduce vs. RDBMS: join

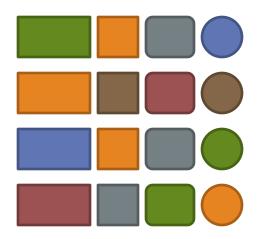


event.cwi.nl/lsde

Why?

- Schemas are a good idea
 - Parsing fields out of flat text files is slow
 - Schemas define a contract, decoupling logical from physical
- Schemas allow for building efficient auxiliary structures
 - Value indexes, join indexes, etc.
- Relational algorithms have been optimised for the underlying system
 - The system itself has complete control of performance-critical decisions
 - Storage layout, choice of algorithm, order of execution, etc.

Storage layout: row vs. column stores



Row store

Column store

Storage layout: row vs. column stores

Row stores

Centrum Wiskunde & Informatica

- Easy to modify a record
- Might read unnecessary data when processing
- Column stores
 - Only read necessary data when processing
 - Tuple writes require multiple accesses

Advantages of column stores

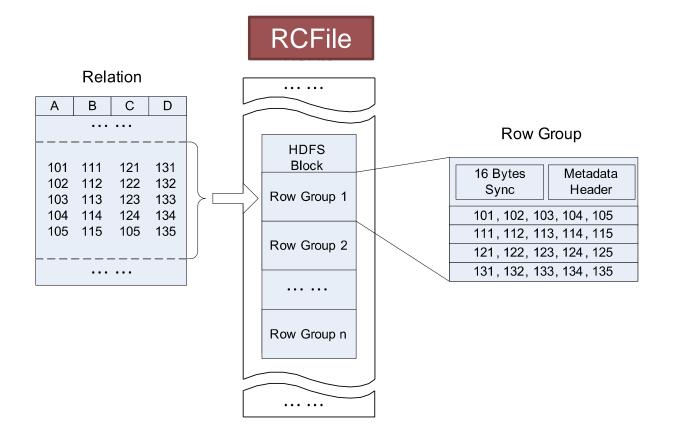
Read efficiency

Centrum Wiskunde & Informatica

- If only need to access a few columns, no need to drag around the rest of the values
- Better compression
 - Repeated values appear more frequently in a column than repeated rows appear
- Vectorised processing
 - Leveraging CPU architecture-level support
- Opportunities to operate directly on compressed data
 - For instance, when evaluating a selection; or when projecting a column

Why not in Hadoop?

CWI



No reason why not

event.cwi.nl/lsde

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE.

Some small steps forward

- MapReduce is a step backward in database access:
 - Schemas are good 🖌

Centrum Wiskunde & Informatica

- Separation of the schema from the application is good
- High-level access languages are good ?
- MapReduce is poor implementation
 - Brute force and only brute force (no indexes, for example)
- MapReduce is not novel
- MapReduce is missing features
 - Bulk loader, indexing, updates, transactions...
- MapReduce is incompatible with DMBS tools

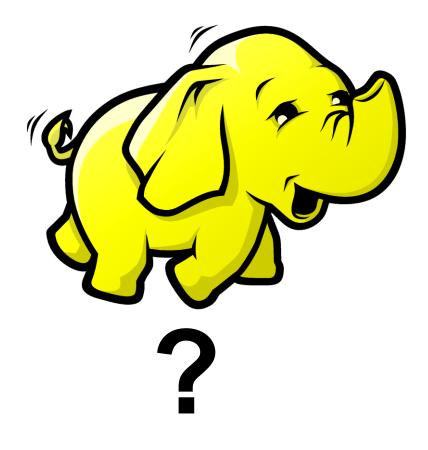
event.cwi.nl/lsde

MODERN SQL-ON-HADOOP SYSTEMS

Analytical Database Systems

Parallel (MPP):	
Teradata	Paraccel
Pivotal	
Vertica	Redshift
Oracle (IMM)	Netteza
DB2-BLU	InfoBright
SQLserver	Vectorwise
(columnstore)	

open source: MySQL LucidDB MonetDB



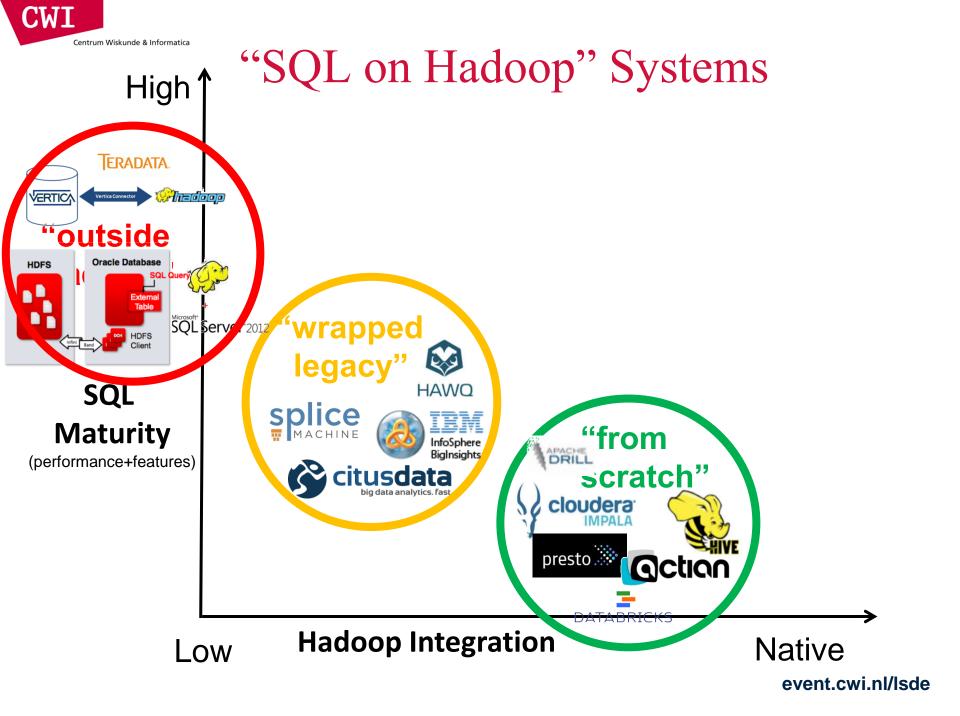
SQL-on-Hadoop Systems

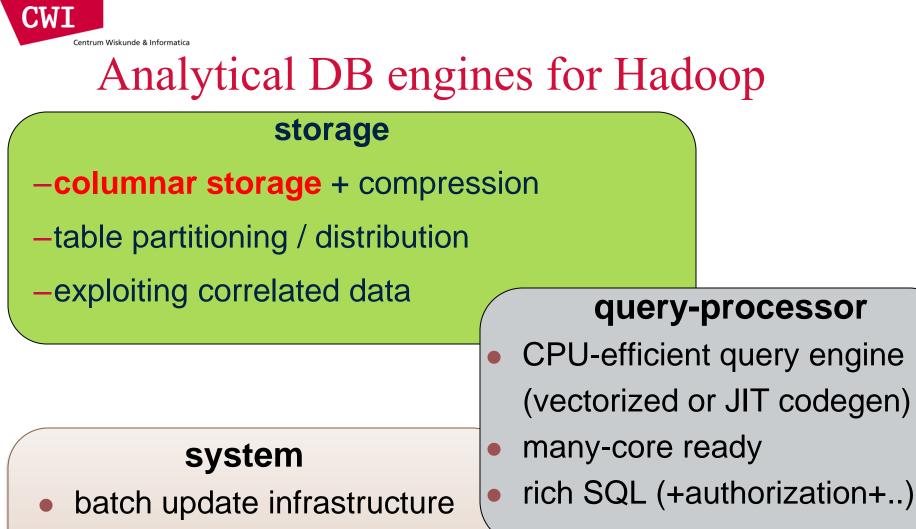
Open Source:

- Hive (HortonWorks)
- Impala (Cloudera)
- Drill (MapR)
- Presto (Facebook)

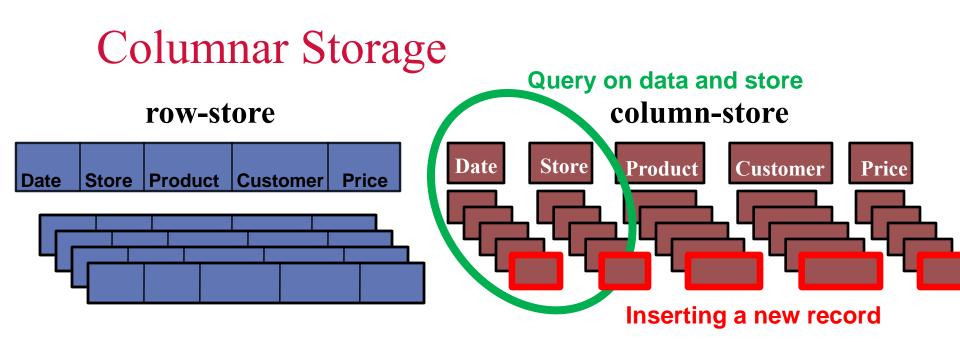
Commercial:

- HAWQ (Pivotal)
- Vortex (Actian)
- Vertica Hadoop (HP)
- BigQuery (IBM)
- DataBricks
- Splice Machine
- CitusData
- InfiniDB Hadoop





- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity



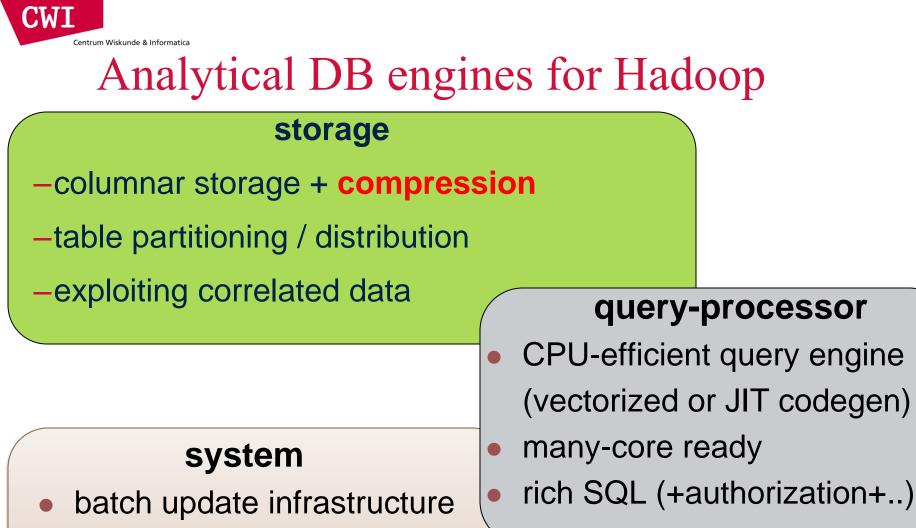
+ easy to add/modify a record

+ only need to read in relevant data

- might read in unnecessary data

- tuple writes require multiple accesses

=> suitable for read-mostly, read-intensive, large data repositories

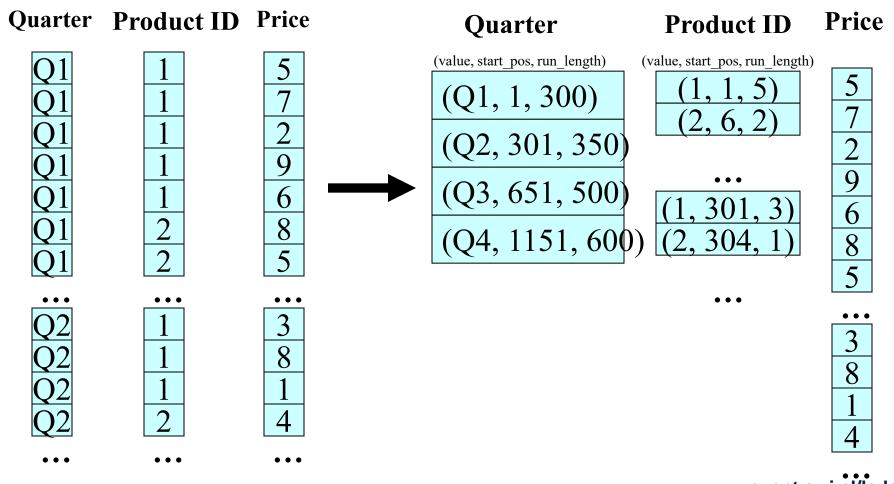


- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity

Columnar Compression

- Trades I/O for CPU
 - A winning proposition currently
 - Even trading RAM bandwidth for CPU wins
 - 64 core machines starved for RAM bandwidth
- Additional column-store synergy:
 - Column store: data of the same distribution close together
 - Better compression rates
 - Generic compression (gzip) vs Domain-aware compression
 - Synergy with vectorized processing (see later) compress/decompress/execution, SIMD
 - Can use extra space to store multiple copies of data in different sort orders (see later)

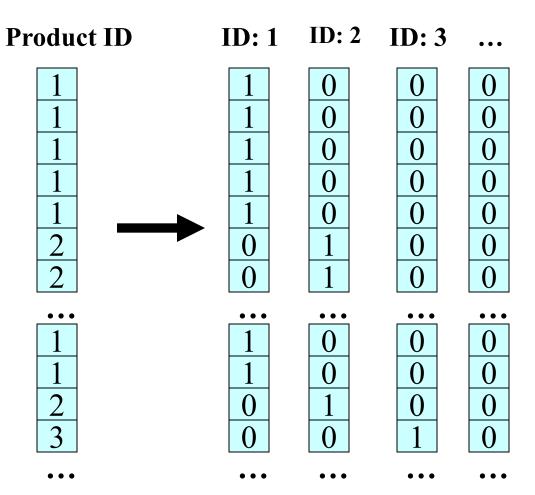
Run-length Encoding



"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Bitmap Encoding

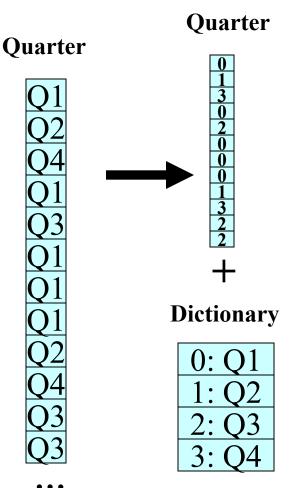
- For each unique value, v, in column c, create bit-vector b
 - b[i] = 1 if c[i] = v
- Good for columns with few unique values
- Each bit-vector can be further compressed if sparse



"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Dictionary Encoding

- For each unique value create dictionary entry
- Dictionary can be per-block or per-column
- Column-stores have the advantage that dictionary entries may encode multiple values at once



Differential Encoding

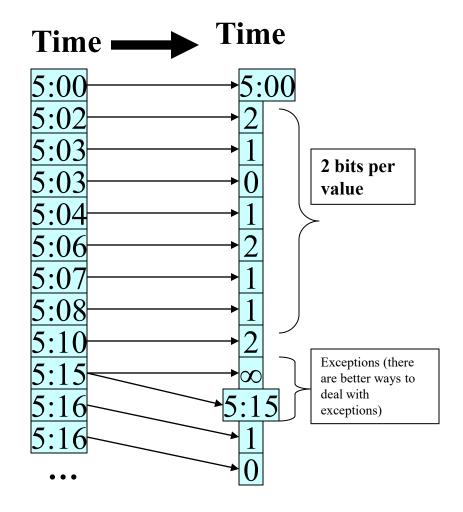
- Encodes values as b bit offset from previous value
- Special escape code (just like frame of reference encoding) indicates a difference larger than can be stored in b bits
 - After escape code, original (uncompressed) value is written
- Performs well on columns containing increasing/decreasing sequences
 - inverted lists
 - timestamps
 - object IDs

CWI

Centrum Wiskunde & Informatica

sorted / clustered columns

"Improved Word-Aligned Binary Compression for Text Indexing" Ahn, Moffat, TKDE'06



Heavy-Weight Compression Schemes

Algorithm	Decompression Bandwidth
BZIP	10 MB/s
ZLIB	80 MB/s
LZO	300 MB/s

- Modern disks (SSDs) can achieve > 1GB/s
- 1/3 CPU for decompression → 3GB/s needed
- → Lightweight compression schemes are better
- → Even better: operate directly on compressed data

"Integrating Compression and Execution in Column-Oriented Database Systems" Abadi et. al, SIGMOD '06

Operating Directly on Compressed Data

Examples

- SUM_i(rle-compressed column[i]) → SUM_g(count[g] * value[g])
- (country == "Asia") → countryCode == 6
 strcmp SIMD

Benefits:

- I/O CPU tradeoff is no longer a tradeoff (CPU also gets improved)
- Reduces memory–CPU bandwidth requirements
- Opens up possibility of operating on multiple records at once



• YARN & elasticity

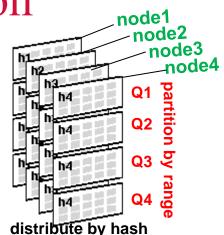
Table Partitioning and Distribution

- data is spread based on a Key
 - Functions: Hash, Range, List
- "distribution"

Centrum Wiskunde & Informatica

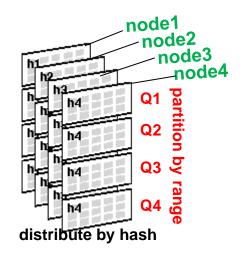
- Goal: parallelism
 - give each compute node a piece of the data
 - each query has work on every piece (keep everyone busy)
- "partitioning"
 - Goal: data lifecycle management
 - Data warehouse e.g. keeps last six months
 - Every night: load one new day, drop the oldest partition
 - Goal: improve access patterm
 - when querying for May, drop Q1,Q3,Q4 ("partition pruning")

Which kind of function would you use for which method?



Data Placement in Hadoop

- Each node writes the partitions it owns
 - Where does the data end up, really?
- HDFS default block placement strategy:
 - Node that initiates writes gets first copy
 - 2nd copy on the same rack
 - 3rd copy on a different rack
- · Rows from the same record should on the same node
 - Not entirely trivial in column stores
 - Column partitions should be co-located
 - Simple solution:
 - Put all columns together in one file (RCFILE, ORCFILE, Parquet)
 - Complex solution:
 - Replace the default HDFS block placement strategy by a custom one



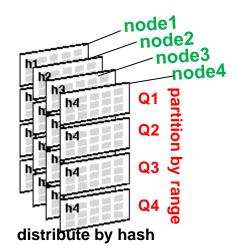
Popular File Formats in Hadoop

Good old CSV

Centrum Wiskunde & Informatica

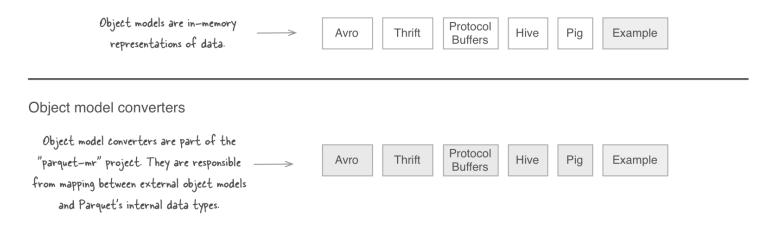
- Textual, easy to parse (but slow), better compress it!
- Sequence Files
 - Binary data, faster to process
- RCfile

- Hive first attempt at column-store
- ORCfile
 - Columnar compression, MinMax
- Parquet
 - Proposed by Twitter and Cloudera Impala
 - Like ORCfile, no MinMax

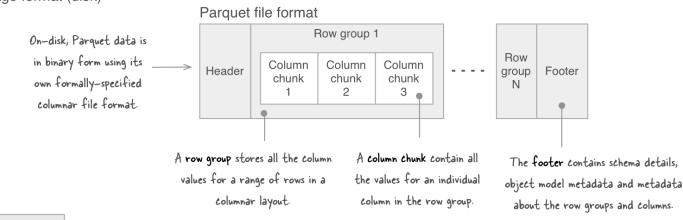


Example: Parquet Format

Object model (memory)

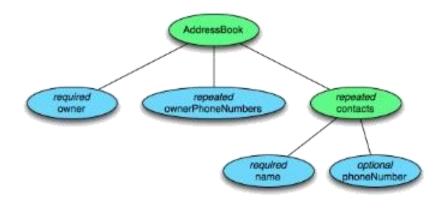


Storage format (disk)



Example: Parquet Format

Table Format



Column	Туре		
OWNER	string		
ownerPhoneNumbers	string		
contacts.name	string		
contacts.phoneNumber	string		

ownerPhoneNumbers contacts riame phoneNumber ris in the phoneNumber ris in the phoneNumber	1	AddressBo	ok		
riame phoneNumbe ris into the end	1		contacts		
eir in kiel ann	owner		name	phoneNumber	
	10	***			
	wite .	4.62	1.14	4.1.1	
			1.1.1	41.5	

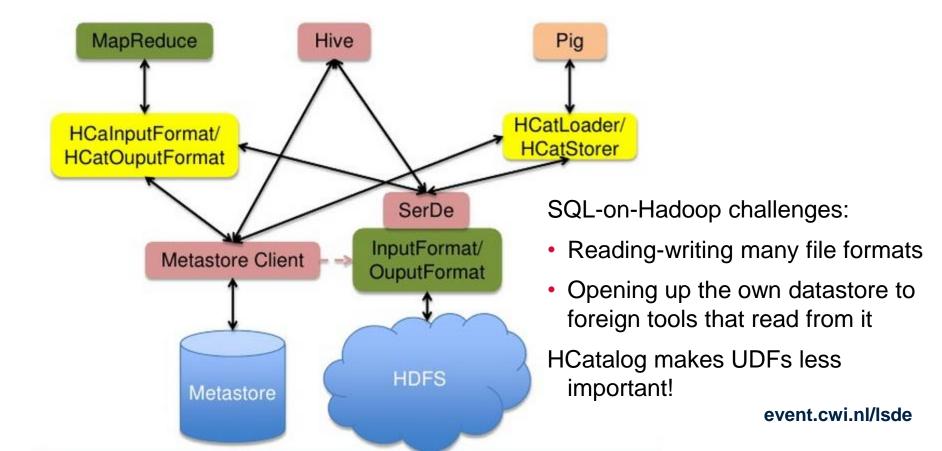
http://dataera.wordpress.com

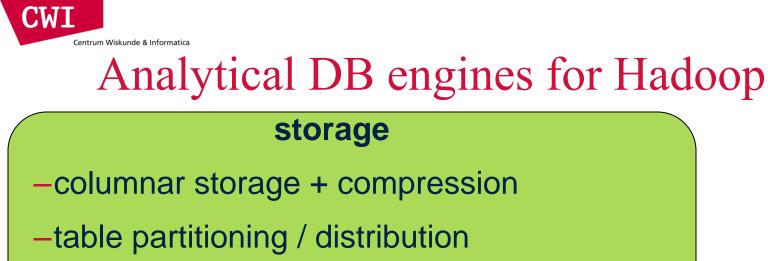
http://linkedin.com/in/yuechen?

HCatalog ("Hive MetaStore")

De-facto Metadata Standard on Hadoop

- Where are the tables? Wat do they contain? How are they Partitioned?
- Can I read from them? Can I write to them?





-exploiting correlated data

system

- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity

query-processor

- CPU-efficient query engine (vectorized or JIT codegen)
- many-core ready
- rich SQL (+authorization+..)

Exploiting Natural Order

Data is often naturally ordered
 very often, on date

- Data is often correlated
 - orderdate/paydate/shipdate
 - marketing campaigns/date
 - ..correlation is everywhere
 - ..hard to predict

Zone Maps

Centrum Wiskunde & Informatica

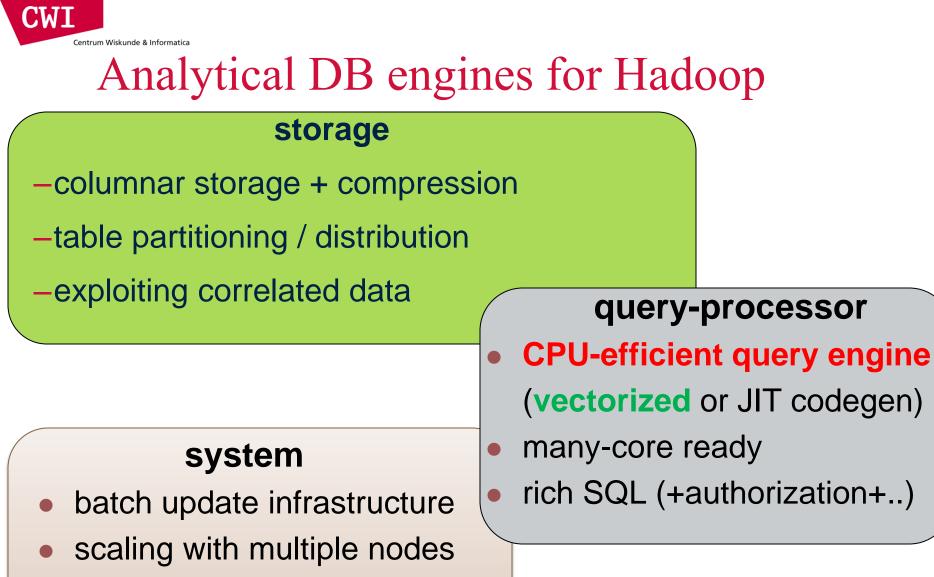
- Very sparse index
- Keeps MinMax for every column
- Cheap to maintain
 - Just widen bounds on each modification

	Accounts							
	balance	name	acctno	KEY				
N	269.38	Isabella	019	00				
zone	914.11	Jackson	038	01				
ŏ	346.61	Lucas	072	02				
	266.55	Sophia	156	03				
И	850.90	Mason	153	04				
zone	521.60	Ethan	282	05				
-	647.38	Emily	389	06				
	119.40	Lily	314	07				
N	526.08	Chloe	332	08				
zone	497.19	Emma	302	09				
N	22.03	Aiden	533	10				
	140.67	Ava	592	11				
မ္မ	383.69	Mia	808	12				
3one 3	899.41	Jacob	896	13				

Q: acctno BETWEEN 150 AND 200?

Accounts.MinMax								
7000	KEY		acctno		name		balance	
zone	\min	max	\min	max	min	max	min	max
0	00	03	019	156	Isabella	Sophia	266.55	914.11
1	04	07	153	380	Emily	Mason	119.40	850.90
2	08	11	332	592	Aiden	Emma	22.03	526.08
3	12	13	808	896	Mia	Jacob	383.69	899.41

Q: key BETWEEN 13 AND 15?



- MetaStore & file formats
- YARN & elasticity

DBMS Computational Efficiency?

TPC-H 1GB, query 1

- selects 98% of fact table, computes net prices and aggregates all
- Results:
 - C program: ?
 - MySQL: 26.2s
 - DBMS "X": 28.1s

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR'05

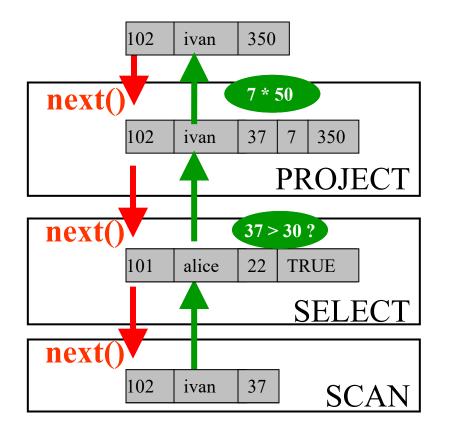
DBMS Computational Efficiency?

TPC-H 1GB, query 1

- selects 98% of fact table, computes net prices and aggregates all
- Results:
 - C program: 0.2s
 - MySQL: 26.2s
 - DBMS "X": 28.1s

"MonetDB/X100: Hyper-Pipelining Query Execution" Boncz, Zukowski, Nes, CIDR'05

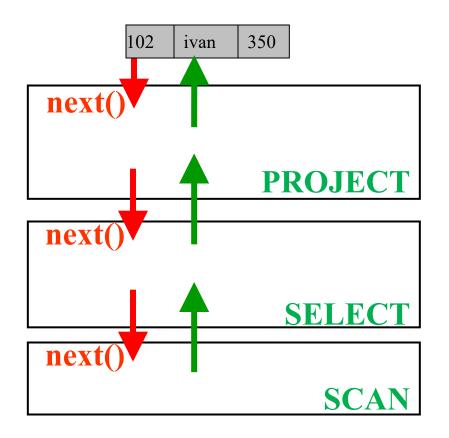
How Do Query Engines Work?



CWI

SELECT id, name (age-30)*50 AS bonus FROM employee WHERE age > 30

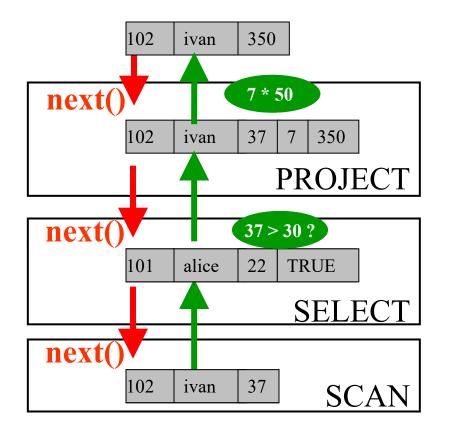
How Do Query Engines Work?



Operators

Iterator interface -open() -**next():** tuple -close()

How Do Query Engines Work?



CWI

Primitives

Provide computational functionality

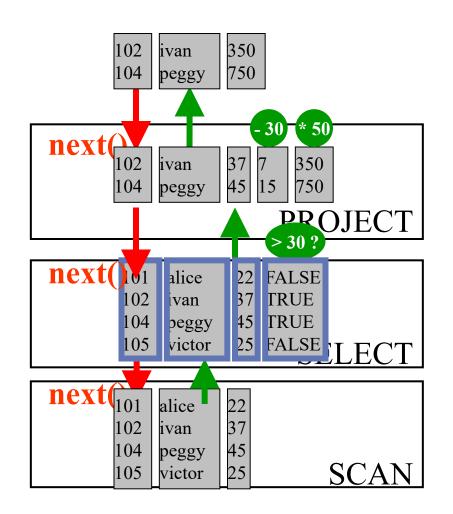
All arithmetic allowed in expressions, e.g. Multiplication

"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05


```
vector = array of ~100
```

processed in a tight loop

CPU cache Resident



"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

Observations:

next() called much less
often → more time spent
in primitives less in
overhead

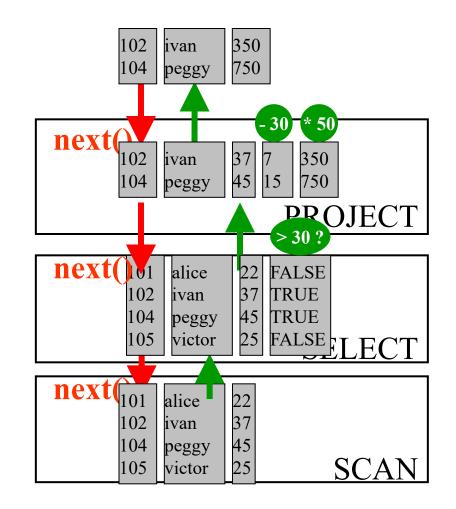
primitive calls process an

CPU Efficiency depends on "nice" code

- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays

- loop-pipelining
- automatic SIMD



"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

Observations:

vectorwise

next() called much less
often → more time spent
in primitives less in
overhead

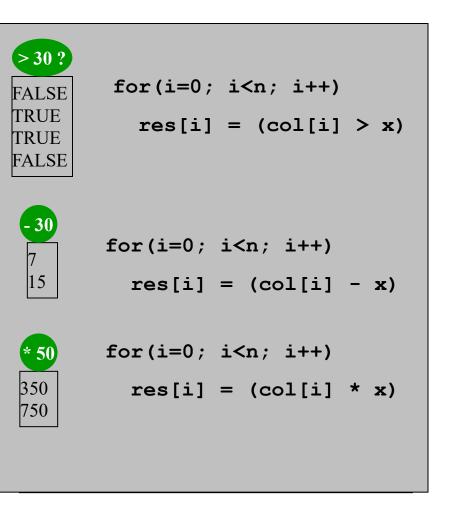
primitive calls process an

CPU Efficiency depends on "nice" code

- out-of-order execution
- few dependencies (control,data)
- compiler support

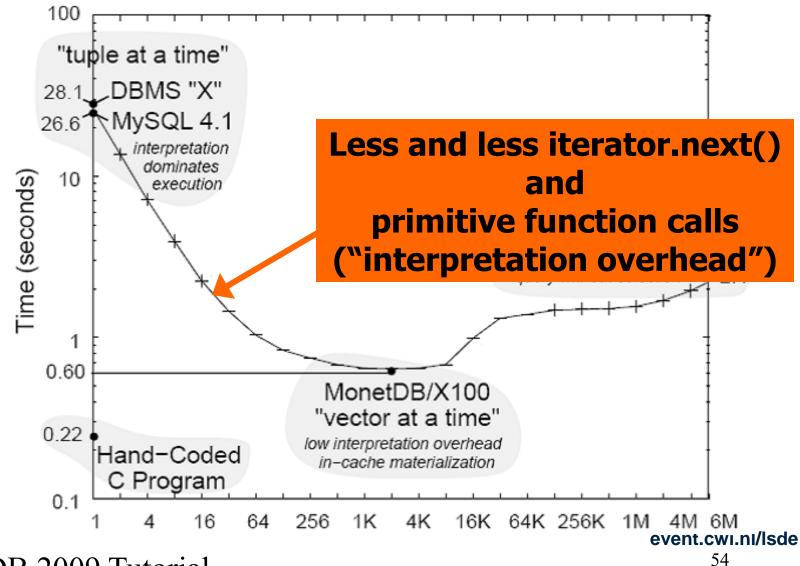
Compilers like simple loops over arrays

- loop-pipelining
- automatic SIMD



"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

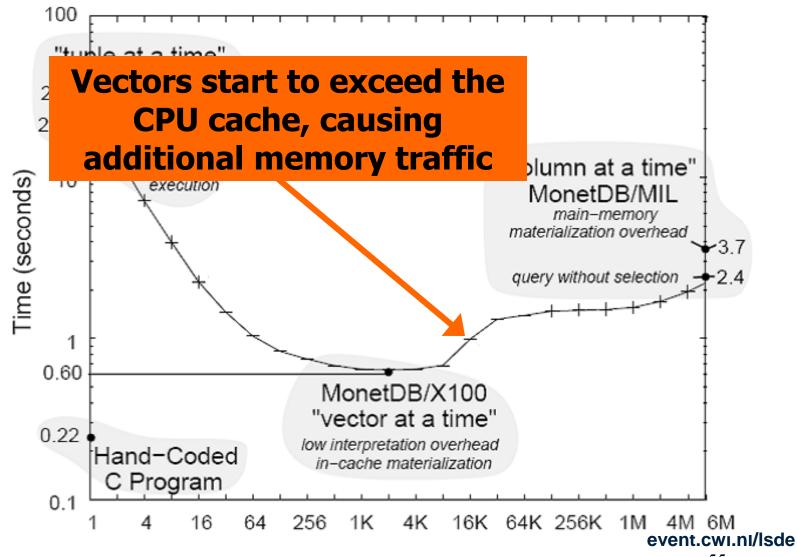
Varying the Vector size



VLDB 2009 Tutorial

"MonetDB/X100: Hyper-Pipelining Query Execution "Boncz, Zukowski, Nes, CIDR'05

Varying the Vector size



VLDB 2009 Tutorial

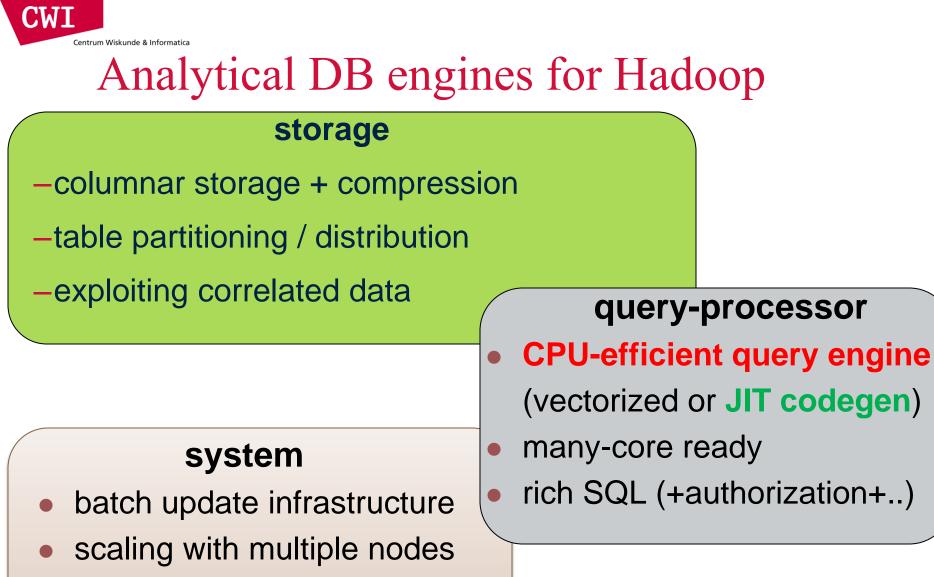
Systems That Use Vectorization

- Actian Vortex (Vectorwise-on-Hadoop)
- Hive, Drill

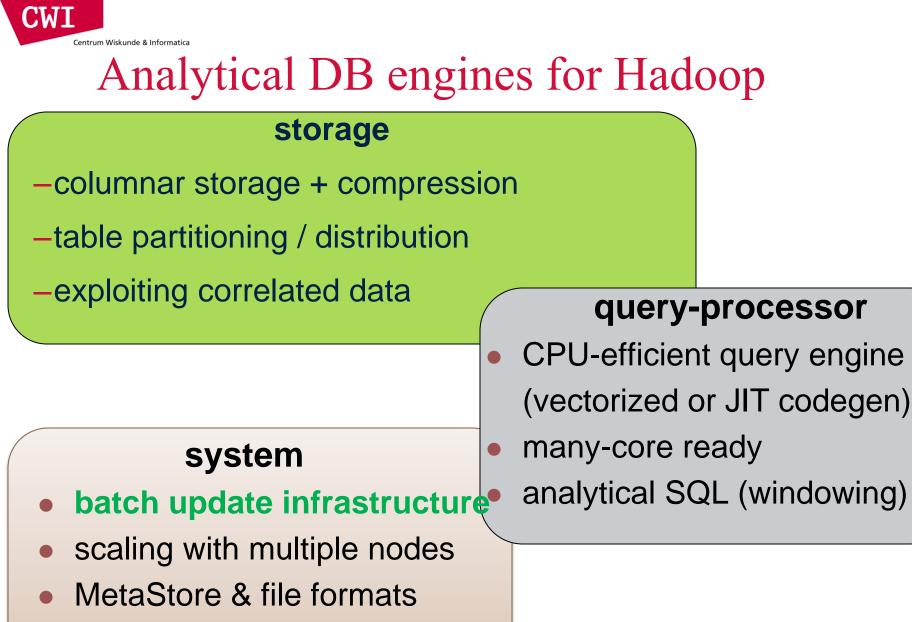
Vectorization

- Drill operates on more than one record at a time
 - Word-sized manipulations
 - SIMD instructions
 - · GCC, LLVM and JVM all do various optimizations automatically
 - Manually code algorithms
- Logical Vectorization
 - Bitmaps allow lightning fast null-checks
 - Avoid branching to speed CPU pipeline

© MapR Technologies, confidential



- MetaStore & file formats
- YARN & elasticity



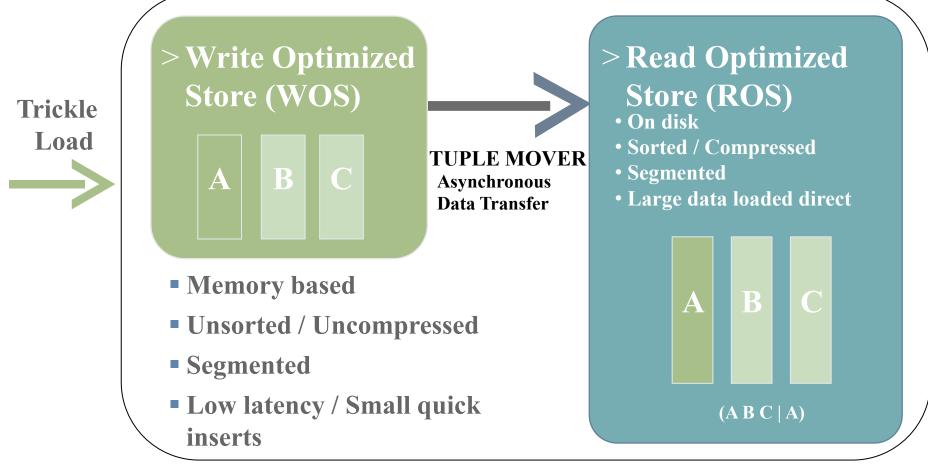
• YARN & elasticity

Batch Update Infrastructure (Vertica)

CWI

Centrum Wiskunde & Informatica

Challenge: hard to update columnar compressed data

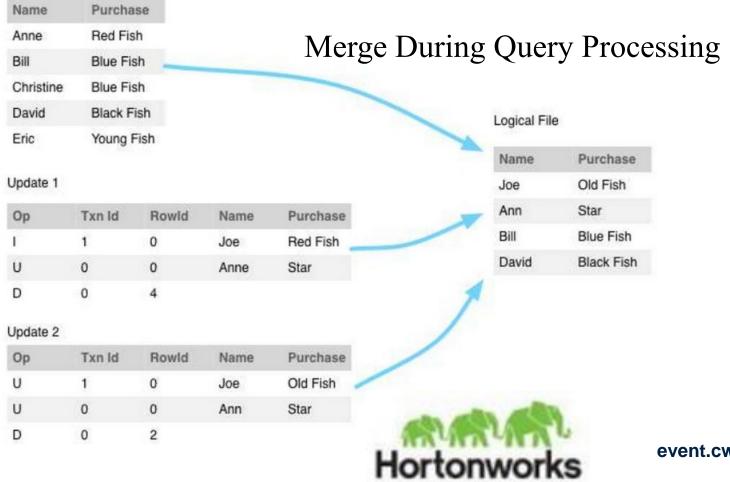


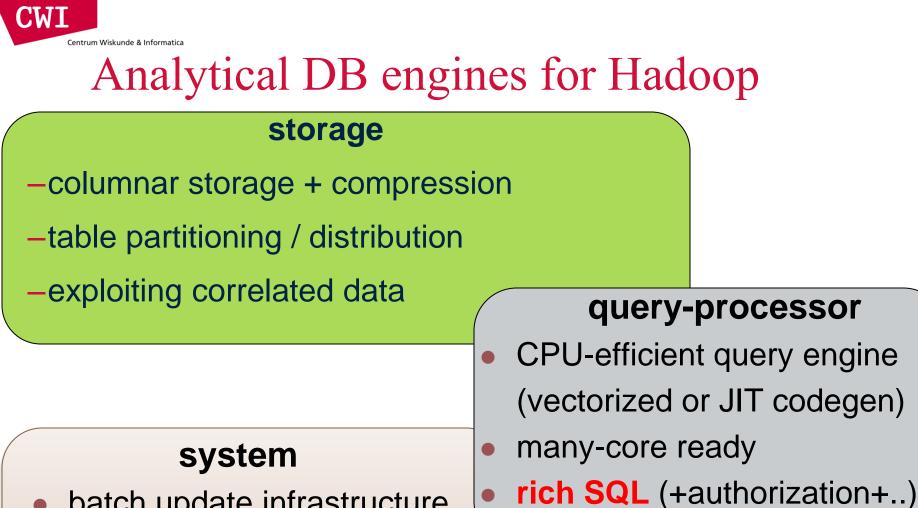
Batch Update Infrastructure (Hive) Challenge: HDFS read-only + large block size

Base File

Centrum Wiskunde & Informatica

CWI





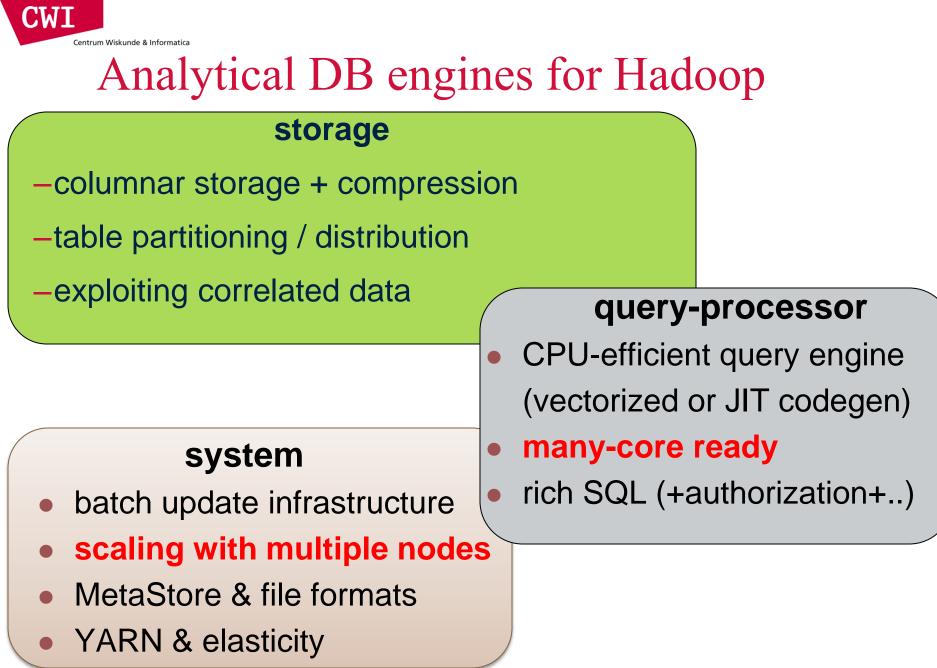
- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity

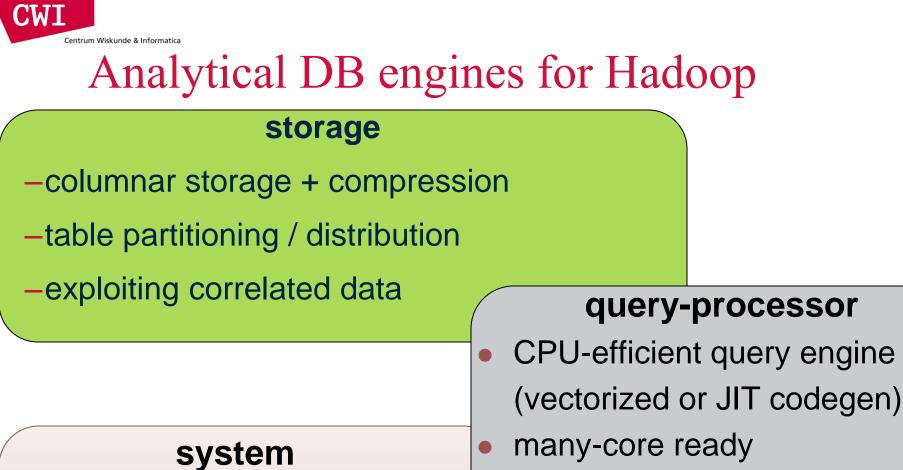
SQL-99 OLAP Extensions

ORDER BY .. PARTITION BY

- window specifications inside a partition
 - first_value(), last_value(), ...
- Rownum(), dense_rank(), ...

SELECT FROM		deptno, sal) OVER (PAR		deptno) AS	avg_dept_sal
EI	IPNO	DEPTNO	SAL A	VG_DEPT_SAL	
7	7782	10	2450	2916.66667	
7	7839	10	5000	2916.66667	
1	7934	10	1300	2916.66667	
7	7566	20	2975	2175	
7	7902	20	3000	2175	
7	7876	20	1100	2175	
7	7369	20	800	2175	
7	7788	20	3000	2175	
-	7521	30	1250	1566.66667	
7	7844	30	1500	1566.66667	
-	7499	30	1600	1566.66667	
-	7900	30	950		
	7698	30	2850		
	7654	30	1250	1566.66667	





- batch update infrastructure
- scaling with multiple nodes
- MetaStore & file formats
- YARN & elasticity

rich SQL (+authorization+..)

YARN possibilities and limitations

Containers are used to assign:

- cores
- RAM

Limitations:

- no support for disk I/O, network (thrashing still possible)
- Long-running systems (e.g. DBMS) may want to adjust cores and RAM over time depending on workload → "elasticity"

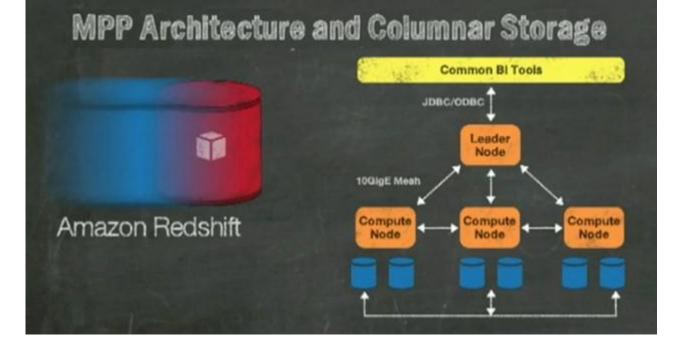
Conclusion

- SQL-on-Hadoop area is very active
 - many open-source and commercial initiatives
- There are many design dimensions
 - All design dimensions of analytical database systems
 - Column storage, compression, vectorization/JIT, MinMax pushdown, partitioning, parallel scaling, update handling, SQL99, ODBC/JDBC APIs, authorization
 - Hadoop design dimensions
 - HCatalog support, reading from and getting read from other Hadoop tools (/writing to..), file format support, HDFS locality, YARN integration

SQL IN THE CLOUD - **BUT NOT ON HADOOP**

Amazon Redshift

- Cloud version of ParAccel, a parallel database
 - ParAccel is hard to manage, maintain
 - Redshift invested in simplying management, using web interface
 - No knobs, kind of elastics, User Defined Functions (python)
 - Highly performant, but storage more expensive than S3 (local disks)



Snowflake

- Brand-new, from-scratch system that works in AWS RedShift competitor
- Stores data on S3 (cheap!) but caches it in local disks for performance
- Highly elastic, supports UDFs using JavaScript, table snapshots ("clone table")
- Puts JSON documents in automatically recognized table format (queryable) Snowflake

Multi-cluster Shared-data Architecture

